Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Bioorg Chem ; 146: 107288, 2024 May.
Article in English | MEDLINE | ID: mdl-38521013

ABSTRACT

Nitroimidazole compounds are well-known bioactive substances, and the structural activity relationship has been reported whereby the position of the nitro group within the imidazole ring has a large influence on the activity. This study focuses on synthesising new trypanocidal agents from the hybridisation of metronidazole with different natural phenols (eugenol, dihydroeugenol and guaiacol). Two different coupling methodologies have been explored in order to analyse the influence of the connector on bioactivity: i) classic direct esterification (AD compounds) and ii) "click" chemistry using a triazole connector (AC compounds). The in vitro trypanocidal tests show good results for both AC and AD hybrid compounds against both epimastigote and trypomastigote forms of T. cruzi. In silico studies showed positive data for most of the synthesised compounds and, in general present low toxicological risks. The AC compounds present lower ClogP (lipophilicity) values than those found for the AD series and higher TPSA (topological polar surface area) values, suggesting lower lipophilicity may be related to the presence of the triazole connector. The AD series compounds have higher Drug Score values than the AC series derivatives, suggesting better general properties for a pharmacological action.


Subject(s)
Chagas Disease , Trypanocidal Agents , Trypanosoma cruzi , Humans , Chagas Disease/drug therapy , Eugenol , Metronidazole/pharmacology , Metronidazole/therapeutic use , Structure-Activity Relationship , Triazoles/therapeutic use , Trypanocidal Agents/chemistry , Guaiacol/chemical synthesis , Guaiacol/chemistry , Guaiacol/pharmacology
2.
Article in English | MEDLINE | ID: mdl-35854812

ABSTRACT

Background: Eugenol shows both antibacterial and antiparasitic activities, suggesting that it might be evaluated as an option for the treatment of praziquantel-resistant schistosome. Methods: The in vitro activities of three eugenol derivatives (FB1, FB4 and FB9) on adult worms from Schistosoma mansoni were examined by fluorescence and scanning electron microscopy to analyze effects on the excretory system and integument damage, respectively. Biochemical tests with verapamil (a calcium channel antagonist) and ouabain (a Na+/K+-ATPase pump inhibitor) were used to characterize eugenol derivative interactions with calcium channels and the Na+/K+-ATPase, while in silico analysis identified potential Na+/K+-ATPase binding sites. Results: The compounds showed effective doses (ED50) of 0.324 mM (FB1), 0.167 mM (FB4), and 0.340 mM (FB9). In addition, FB4 (0.322 mM), which showed the lowest ED50, ED90 and ED100 (p < 0.05), caused the most damage to the excretory system and integument, according to both fluorescence and scanning electron microscopy analysis. The death of adult worms was delayed by ouabain treatment plus FB1 (192 versus 72 hours) and FB9 (192 versus 168 hours), but the response to FB4 was the same in the presence or absence of ouabain. Besides, no changes were noted when all of the eugenol derivatives were combined with verapamil. Moreover, FB1 and FB9 inhibited Na+/K+-ATPase activity according to in silico analysis but FB4 did not show a time-dependent relationship and may act on targets other than the parasite Na+/K+-ATPase. Conclusion: Eugenol derivatives, mainly FB4 when compared to FB1 and FB9, seem to act more effectively on the integument of adult S. mansoni worms.

3.
Nat Prod Res ; 36(9): 2246-2253, 2022 May.
Article in English | MEDLINE | ID: mdl-33032468

ABSTRACT

We report here a series of glucosides which are active as inhibitors of the angiotensin converting enzyme (ACE). They are structurally related to the natural compound eugenol and exhibited significant inhibition values. Their syntheses were expeditious and we could obtain informative docking plots of them complexed to this enzyme. A glucoside derived from eugenol, carrying a carboxylic group in the aglycone, was the most active of them (with an IC50 of 0.4 mM) and showed good binding energies in docking studies with ACE. Moreover, computational prediction of toxicity risks, physicochemical properties and drug score show that the glucoside derivative of eugenol is a suitable compound for optimisation studies aimed at finding new drug candidates.


Subject(s)
Eugenol , Peptidyl-Dipeptidase A , Angiotensin-Converting Enzyme Inhibitors/chemistry , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Eugenol/pharmacology , Glucosides/chemistry , Glucosides/pharmacology , Molecular Docking Simulation , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/metabolism
4.
J. venom. anim. toxins incl. trop. dis ; 28: e20210108, 2022. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1386131

ABSTRACT

Background Eugenol shows both antibacterial and antiparasitic activities, suggesting that it might be evaluated as an option for the treatment of praziquantel-resistant schistosome. Methods The in vitro activities of three eugenol derivatives (FB1, FB4 and FB9) on adult worms from Schistosoma mansoni were examined by fluorescence and scanning electron microscopy to analyze effects on the excretory system and integument damage, respectively. Biochemical tests with verapamil (a calcium channel antagonist) and ouabain (a Na+/K+-ATPase pump inhibitor) were used to characterize eugenol derivative interactions with calcium channels and the Na+/K+-ATPase, while in silico analysis identified potential Na+/K+-ATPase binding sites. Results The compounds showed effective doses (ED50) of 0.324 mM (FB1), 0.167 mM (FB4), and 0.340 mM (FB9). In addition, FB4 (0.322 mM), which showed the lowest ED50, ED90 and ED100 (p < 0.05), caused the most damage to the excretory system and integument, according to both fluorescence and scanning electron microscopy analysis. The death of adult worms was delayed by ouabain treatment plus FB1 (192 versus 72 hours) and FB9 (192 versus 168 hours), but the response to FB4 was the same in the presence or absence of ouabain. Besides, no changes were noted when all of the eugenol derivatives were combined with verapamil. Moreover, FB1 and FB9 inhibited Na+/K+-ATPase activity according to in silico analysis but FB4 did not show a time-dependent relationship and may act on targets other than the parasite Na+/K+-ATPase. Conclusion Eugenol derivatives, mainly FB4 when compared to FB1 and FB9, seem to act more effectively on the integument of adult S. mansoni worms.(AU)


Subject(s)
Schistosoma/drug effects , Schistosomiasis/drug therapy , Schistosomicides/analysis , In Vitro Techniques , Computer Simulation , Eugenol/analogs & derivatives , Neglected Diseases/drug therapy
5.
J Pharm Pharm Sci ; 24: 421-434, 2021.
Article in English | MEDLINE | ID: mdl-34410908

ABSTRACT

BACKGROUND: The search for new drug compounds is always challenging and there are several different strategies that involve the most varied and creative approaches in medicinal chemistry. One of them is the technique of molecular hybridisation: forming a hybrid compound from two or more pharmacophoric subunits. These hybrids may maintain the characteristics of the original compound and preferably show improvements to its pharmacological action, with reduced side effects and lower toxicity when compared to the original components. This study specifically focuses on synthesising hybrid molecules which demonstrate trypanocidal activity against the epimastigote and trypomastigote forms of Trypanosoma cruzi. METHODS: In this context, this study centres on the synthesis of a novel structural scaffold via molecular hybridisation; by using a triazole species to link a metronidazole unit to a eugenol analogue unit, the objective being to combine their therapeutic properties into a new molecular structure. The resulting hybrid molecules were evaluated against T. cruzi which is responsible for high incidences of trypanosomiasis in tropical countries such as Brazil. RESULTS: The results of this study showed an improvement in the anti-parasitic activity of the hybrid compounds with the best result coming from hybrid compounds [8] and [9], which present an activity similar to the control drug benznidazole. The new compounds, utilising a triazole species as a coupling connector, demonstrated promising results and has highlighted the path for planning similar structural patterns to investigate new compounds. CONCLUSIONS: In summary, we can conclude that the synthesised hybrid compounds demonstrate that using a triazole to link metronidazole with natural phenols, produces hybrid molecules that are promising as a new class of compounds of therapeutic interest for further investigation.


Subject(s)
Eugenol/pharmacology , Metronidazole/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Eugenol/chemical synthesis , Eugenol/chemistry , Metronidazole/chemical synthesis , Metronidazole/chemistry , Structure-Activity Relationship , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/chemistry
6.
Med Mycol ; 59(1): 58-66, 2021 Jan 04.
Article in English | MEDLINE | ID: mdl-32407486

ABSTRACT

The number of deaths due to systemic fungal infections is increasing alarmingly, which is aggravated by the limitations of traditional treatments and multidrug resistance. Therefore, the research and development of new therapeutic options against pathogenic fungi is an urgent need. To evaluate the fungicidal activity of a synthetic compound, 1,3-bis-(3,4-dichlorophenoxy)propan-2-aminium chloride (2j), through time-kill studies and pharmacokinetics/pharmacodynamics (PK/PD) modeling. The protective effect of the compound was also evaluated using the Drosophila melanogaster minihost model of candidiasis. Mathematical modeling of time-kill data of compound 2j was performed to obtain PD characteristics. Additionally, Toll-deficient D. melanogaster flies were infected with a Candida albicans strain and treated with 2j. We observed that compound 2j demonstrated a time- and dose-dependent fungicidal effect against Candida spp. and dermatophytes, even at low concentrations, and rapidly achieved kill rates reaching the maximum effect in less than one hour. The efficacy of the compound against systemic candidiasis in D. melanogaster flies was comparable to that achieved by fluconazole. These results support the potential of compound 2j as a systemic antifungal agent candidate and serve as a starting point for further studies involving mammalian animal models.


Subject(s)
Antifungal Agents/pharmacology , Candida albicans/drug effects , Candidiasis/drug therapy , Candidiasis/veterinary , Drosophila melanogaster/drug effects , Fluconazole/pharmacology , Microbial Sensitivity Tests/veterinary , Animals , Disease Models, Animal , Humans , Inhibitory Concentration 50
7.
J Forensic Leg Med ; 74: 102020, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32658767

ABSTRACT

Sexual violence is a universal phenomenon without restriction to sex, age, ethnicity or social class that causes devastating effects in the physical and mental health spheres, in the short-term and long-term, such as pregnancy, sexually transmitted infections (STI) and greater susceptibility to psychiatric symptoms, especially depression. Some cases of sexual assault and rape are based on the use of so-called drug-facilitated sexual assault (DFSA), which cause victims' loss of consciousness and inability to defend, making them vulnerable to violence. Thus, this article aimed to review the literature on gender violence and the drugs used to facilitate sexual assault, addressing their mechanism of action and pharmacokinetics, as well as drug detection times in human body and types of forensic identification. It is understood that the knowledge of these drugs and their pharmacological and diagnostic mechanisms should be widely disseminated, especially about sensitivity tests and the time the drug remains in the body, which would validate the promotion of evidence to prove abuse, and, thus, being able to give a promising outcome to cases of aggression, which is extremely beneficial for women.


Subject(s)
Gender-Based Violence , Poisoning/complications , Sex Offenses , Unconsciousness/chemically induced , Adjuvants, Anesthesia/chemistry , Adjuvants, Anesthesia/poisoning , Alcohol Drinking/adverse effects , Anesthetics, Dissociative/chemistry , Anesthetics, Dissociative/poisoning , Benzodiazepines/chemistry , Benzodiazepines/poisoning , Crime Victims , Female , Humans , Ketamine/chemistry , Ketamine/poisoning , Molecular Structure , Poisoning/diagnosis , Sodium Oxybate/chemistry , Sodium Oxybate/poisoning , Substance Abuse Detection , Substance-Related Disorders/complications
8.
Toxicol Appl Pharmacol ; 380: 114692, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31356931

ABSTRACT

Arylacetamides are widely used as synthetic intermediates to obtain medicinal substances. This work evaluated in vitro antiproliferative activity of ten 2-Chloro-N-arylacetamides on human normal and cancer cells and detailed in vivo toxicological and anticancer investigations. Initially, cytotoxic colorimetric assays were performed using tumor lines, peripheral blood mononuclear cells (PBMC) and erythrocytes. Compounds 2, 3 and 4 were tested for acute toxicity (50, 150 and 300 mg/kg) and for subacute antitumoral capacity in HCT-116 colon carcinoma-bearing xenograft mice for 15 days at 25 mg/kg/day. Most compounds revealed cytotoxic action on tumor lines and PBMC, but activity on human erythrocytes were not detected. Molecular dipole moment, lipophilicity and electronic constant of aryl substituents had effects upon in vitro antiproliferative capacity. More common in vivo acute behavioral signals with compounds 2, 3 and 4 were muscle relaxation, reduction of spontaneous locomotor activity and number of entries in closed arms and increased number of falls andtime spent in open arms, suggesting diazepam-like anxiolytic properties. Decrease of grabbing strength and overall activity were common, but palpebral ptosis and deaths occurred at 300 mg/kg only. Compounds 2 and 3 reduced colon carcinoma growth (21.2 and 27.5%, respectively, p < 0.05) without causing apparent signals of organ-specific toxicity after subacute exposure. The structural chemical simplicity of arylacetamides make them cost-effective alternatives and justifies further improvements to enhance activity, selectivity and the development of pharmaceutical formulations.


Subject(s)
Acetamides/therapeutic use , Anti-Anxiety Agents/therapeutic use , Antineoplastic Agents/therapeutic use , Neoplasms/drug therapy , Acetamides/pharmacology , Acetamides/toxicity , Adolescent , Adult , Animals , Anti-Anxiety Agents/pharmacology , Anti-Anxiety Agents/toxicity , Antineoplastic Agents/pharmacology , Antineoplastic Agents/toxicity , Behavior, Animal/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Female , Humans , Leukocytes, Mononuclear/drug effects , Mice , Young Adult
9.
Mycologia ; 111(4): 612-623, 2019.
Article in English | MEDLINE | ID: mdl-31204895

ABSTRACT

The aim of this study was to evaluate the antifungal potential of 11 chloroacetamide derivatives and derivative incorporated into a film-forming system (FFS) as a potential alternative for the topical treatment of superficial and skin mycoses. The minimum inhibitory concentration (MIC) evaluation followed Clinical and Laboratory Standards Institute protocols M27-A3 (Candida) and M28-A2 (dermatophytes). Compounds 2, 3, and 4 were the most effective against Candida species (MIC range: 25-50 µg/mL) and dermatophytes (MIC range: 3.12-50 µg/mL). Compound 2 maintained its antifungal activity when incorporated in a FFS, with MIC values equivalent to the free compound. In addition, the compound does not act through complexation with ergosterol, suggesting that it may act on other targets of the fungal cell membrane. Chloroacetamide derivatives presented anti-Candida and anti-dermatophytic effectiveness. The FFS containing compound 2 has shown to be superior to traditional topical treatment of superficial and cutaneous fungal infections. It was found that these new chemical entities, with their applicability, are an excellent alternative to the topical treatment of fungal skin infections.


Subject(s)
Acetamides/therapeutic use , Arthrodermataceae/drug effects , Candida/drug effects , Dermatomycoses/drug therapy , Acetamides/administration & dosage , Acetamides/pharmacology , Administration, Topical , Antifungal Agents/therapeutic use , Dermatomycoses/microbiology , Humans , Microbial Sensitivity Tests , Skin/microbiology
10.
Braz. J. Pharm. Sci. (Online) ; 53(1): e16067, 2017. tab, graf
Article in English | LILACS | ID: biblio-839450

ABSTRACT

ABSTRACT We describe herein the synthesis and evaluation of the antileishmanial activity against promastigote forms of Leishmania amazonensis and cytotoxicity to murine macrophages of a series of 2-chloro-N-arylacetamide derivatives. All compounds were active, except one (compound 3). Compound 5 presented the most promising results, showing good antileishmanial activity (CI50=5.39±0.67 µM) and moderate selectivity (SI=6.36), indicating that further development of this class is worthwhile. Preliminary QSAR studies, although not predictive, furnished some insights on the importance of electronic character of aryl substituent to biological activity, as well as an indirect influence of hydrophobicity on activity.


Subject(s)
Animals , Female , Rats , Leishmaniasis/drug therapy , Quantitative Structure-Activity Relationship , Leishmania mexicana/isolation & purification , Hydrophobic and Hydrophilic Interactions , Macrophages/cytology
11.
Vet Parasitol ; 217: 81-8, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26827866

ABSTRACT

The development of new therapeutic strategies to treat leishmaniasis has become a priority. In the present study, the antileishmanial activity of 8-hydroxyquinoline (8-HQN) was investigated against in vitro promastigotes and in vivo intra-macrophage amastigotes of three Leishmania species: Leishmania amazonensis, Leishmania infantum and Leishmania braziliensis. Studies were performed to establish the 50% Leishmania inhibitory concentration (IC50) of 8-HQN, as well as its 50% cytotoxic concentration (CC50) on murine macrophages and in human red blood cells. The inhibition of macrophages infection was also evaluated using parasites that were pre-treated with 8-HQN. The effects of this compound on nitric oxide (NO) production and in the mitochondrial membrane potential were also evaluated. Finally, the therapeutic efficacy of 8-HQN was assessed in a known murine model, L. amazonensis-chronically infected BALB/c mice. Our results showed that 8-HQN was effective against promastigote and amastigote stages of all tested Leishmania species, presenting a selectivity index of 328.0, 62.0 and 47.0 for L. amazonensis, L. infantum and L. braziliensis, respectively. It was effective in treating infected macrophages, as well as in preventing the infection of these cells using pre-treated parasites. In addition, 8-HQN caused an alteration in the mitochondrial membrane potential of the parasites. When administered at 10mg/kg body weight/day by subcutaneous route, this product was effective in reducing the lesion diameter, as well as the parasite load in evaluated tissues and organs of infected animals. The results showed the in vitro and in vivo efficacy of 8-HQN against three different Leishmania species causing tegumentary and/or visceral leishmaniasis, and it could well be used for future therapeutic optimization studies to treat leishmaniasis.


Subject(s)
Leishmania infantum/drug effects , Leishmania/drug effects , Oxyquinoline/pharmacology , Animals , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/therapeutic use , Antiprotozoal Agents/toxicity , Erythrocytes/drug effects , Female , Humans , Inhibitory Concentration 50 , Leishmania braziliensis/drug effects , Leishmaniasis, Cutaneous/drug therapy , Leishmaniasis, Visceral/drug therapy , Macrophages/drug effects , Membrane Potential, Mitochondrial/drug effects , Mice , Mice, Inbred BALB C , Oxyquinoline/therapeutic use , Oxyquinoline/toxicity , Parasite Load , Treatment Outcome
12.
Mem Inst Oswaldo Cruz ; 110(4): 566-8, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26061148

ABSTRACT

We describe herein the antitrypanosomal activity of 20 novel 1,3-bis(aryloxy)propan-2-amine derivatives. Compounds 2, 4, 6, 12, 15, 16 and 19 were significantly active against amastigote and trypomastigote forms, with half maximal inhibitory concentrationvalues in the range of 6-18 µM. In the cytotoxicity tests against L929 cells, only compound 4 presented selectivity index value above 10, indicating low toxicity.


Subject(s)
Benzene Derivatives/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Cell Line , Inhibitory Concentration 50 , Parasitic Sensitivity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...